技术中心
您现在的位置:首页 >> 技术中心
基于DTW算法的特定人孤立词语音识别原理
作者:admin  发布日期:2013.05.04
【导读】在特定人语音识别中,动态时间归整(DTW)算法是最为简单有效的方法。DTW算法解决了发音长短不一的模板匹配问题,是语音识别中出现较早、较为经典的一种算法。本文阐述了基于DTW算法的特定人孤立词语音识别的基本原理。

常见的语音识别方法有动态时间归整技术(DTW)、矢量量化技术(VQ)、隐马尔可夫模型(HMM)、基于段长分布的非齐次隐马尔可夫模型(DDBHMM)和人工神经元网络(ANN)。

DTW(Dynamic Time Warping,动态时间归整)是较早的一种模式匹配和模型训练技术,它应用动态规划(DP)的思想成功解决了语音信号特征参数序列比较时时长不等的难题,在特定人孤立词语音识别中获得了良好性能。

虽然HMM模型和ANN在连续语音大词汇量语音识别系统优于DTW,但由于DTW算法计算量较少、无需前期的长期训练,也很容易将DTW算法移植到单片机、DSP上实现语音识别且能满足实时性要求,故其在孤立词语音识别系统中仍然得到了广泛的应用。

语音识别原理

语音识别系统的本质就是一种模式识别系统,它也包括特征提取、模式匹配、参考模式库等基本单元。由于语音信号是一种典型的非平稳信号,加之呼吸气流、外部噪音、电流干扰等使得语音信号不能直接用于提取特征,而要进行前期的预处理。预处理过程包括预滤波、采样和量化、分帧、加窗、预加重、端点检测等。经过预处理的语音数据就可以进行特征参数提取。在训练阶段,将特征参数进行一定的处理之后,为每个词条得到一个模型,保存为模板库。在识别阶段,语音信号经过相同的通道得到语音参数,生成测试模板,与参考模板进行匹配,将匹配分数最高的参考模板作为识别结果。后续的处理过程还可能包括更高层次的词法、句法和文法处理等,从而最终将输入的语音信号转变成文本或命令。

DTW算法原理

DTW是把时间规整和距离测度计算结合起来的一种非线性规整技术,它寻找一个规整函数im=Ф(in) ,将测试矢量的时间轴n非线性地映射到参考模板的时间轴m上,并使该函数满足:

D就是处于最优时间规整情况下两矢量的距离。由于DTW不断地计算两矢量的距离以寻找最优的匹配路径,所以得到的是两矢量匹配时累积距离最小所对应的规整函数,这就保证了它们之间存在的最大声学相似性。

DTW算法的实质就是运用动态规划的思想,利用局部最佳化的处理来自动寻找一条路径,沿着这条路径,两个特征矢量之间的累积失真量最小,从而避免由于时长不同而可能引入的误差。

关闭 | 浏览( ) |
更多
联系我们 | 网站地图
COPYRIGHT © 2013-2015 创微芯电子科技 ALL RIGHT RESERVED.
技术支持:宇蓝网络    后台管理   访问次数:[]